

The influence of water on the changes in appearance as a result of weathering of polymeric materials

Pieter Gijsman

HEALTH • NUTRITION • MATERIALS

Weathering is due to a complex combination of factors

- UV radiation, visible light
 - spectral distribution; intensity
 - season, exposure angle, latitude
- □ Heat, thermal cycling
 - sample temperature
 - backing

Moisture rain, humidity

- □ Acid rain, other pollutants
- □ Mechanical stresses, abrasion
- Biological attack
 - mold, mildew, bird droppings

Decreasing Scientific Knowledge

Experimental:

□ Materials studied:

- 1. Composite resin
- 2. Glass fiber reinforced Polyamide 6,
- 3. Powder coatings (Polyamide, Powder in-mold, Super durable Polyester)

Accelerated weathering methods used

		N
	Florida simulating condition (Drv/Wet)	Arizona simulating condition (Drv)
Accelerated test equipment:	Atlas Weather-Ometer, Ci65A	Atlas Weather-Ometer, C3000
Test standard:	ASTM G 155 (november 2000) (successor of ASTM G26); ISO 4892-2	PV3929 (Volkwagen)
Specification of test conditions:		
Light source:	Xenon light source filtered with inner and outer borosilicate S filters	Xenon light source filtered with inner and outer borosilicate S filters
Black standard temperature:	67 ± 2 °C	90 ± 2 °C
Test chamber temperature:	42-45 °C	50 °C
Radiation intensity:	0.35 ± 0.02 W/m2/nm at 340nm	0.6± 0.02 W/m2/nm at 340nm
Relative humidity (end of dry period):	50 ± 5 %	20 ± 5 %
Dry/wet cycle:	102 min dry/18 min front water spray	None
Light/dark cycle:	Continuous illumination	Continuous illumination

- Weathering in borosilicate vessels (Florida simulating

Page 2 conditions)

Synolite 0270-N2 based on:

Page 3 J. Sampers, E. Hutten, P. Gijsman, Accelerated weathering of unsaturated polyester resins. Aspects of appearance change, Polymer Testing, 44 (2015) 208-223

Page 4 J. Sampers, E. Hutten, P. Gijsman, Accelerated weathering of unsaturated polyester resins. Aspects of appearance change, Polymer Testing, 44 (2015) 208-223

Page 5 J. Sampers, E. Hutten, P. Gijsman, Accelerated weathering of unsaturated polyester resins. Aspects of appearance change, Polymer Testing, 44 (2015) 208-223

Page 6 J. Sampers, E. Hutten, P. Gijsman, Accelerated weathering of unsaturated polyester resins. Aspects of appearance change, Polymer Testing, 44 (2015) 208-223

□ Conclusions:

- Influence of moisture depend on evaluation criterion used:
 - Gloss loss: Large influence of moisture
 - Discoloration: No influence of moisture
- Doping in water after dry weathering leads to a large gloss loss:
 - Washing away oxidized degradation products seems to be an important role of water

Page 7 J. Sampers, E. Hutten, P. Gijsman, Accelerated weathering of unsaturated polyester resins. Aspects of appearance change, Polymer Testing, 44 (2015) 208-223

Moisture has a large influence on the weathering of GFR-PA6

Water treatment after dry accelerated ageing on colour

Water treatment has a large influence on ΔE .

More glass fibers and cracks are visible after weathering with a rain cycle.

Cracks are more pronounced after water treatment of dry sample,

This suggests that degraded material has been washed away.

Water washes away oxidized polymer

3. Influence moisture on the weathering of powder coatings

- I. Polyamide powder coatings
 - Different coatings with as main components: Aliphatic/cyclo aliphatic diamines, aromatic and aliphatic diacids, Primid XL-552

 N^1, N^0, N^0 -tetrakis(2-hydroxyethyl)adipamide

- II. Polyester powder in-mold coatings
 - Coatings based on :

Unsaturated polyester based on isophtalic acid Vinylether functional urethane crosslinker Benzylperoxide

- III. Super durable polyester powder coating
 - 100% Isophtalic acid based polyester resin cured with Primid XL-552

3.I Influence moisture on the weathering of polyamide powder coatings

Different coatings with as main components: Aliphatic/cyclo aliphatic diamines, aromatic and aliphatic diacids, Primid XL-552

3.I Influence moisture on the weathering of polyamide powder coatings

3.I Influence moisture on the weathering of polyamide powder coatings

3.II Influence moisture on the weathering of powder in-mould coatings on AI plates

E. BRIGHTER LIVING.

Page 16

Benzylperoxide

3.II Influence moisture on the weathering of powder in-mould coatings on AI plates

3.Ill Influence moisture on the weathering of a super durable polyester based powder coating

(IPA based powder coating cured with 5% Primid XL-552)

Conclusions

□ Moisture plays an important role during weathering of polycondensates

- □ Possible roles of water:
 - Hydrolysis
 - Drying wetting tension
 - Plasticizer (decrease modulus and Tg)
 - Wash the surface (erosion)
- In all cases washing away by photo-oxidation formed degradation products is the most plausible mechanism

Acknowledgement

Jacques Sampers

□ Marjolein Diepens

Manon Mak

for inviting me

for allowing me to present

You for listening

